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Abstract. With the advent of native and XML enabled database systems, tech-
niques for efficiently storing, indexing and querying large collections of XML 
documents have become an important research topic. This paper presents the 
storage, indexing and query processing architecture of eXist, an Open Source 
native XML database system. eXist is tightly integrated with existing tools and 
covers most of the native XML database features. An enhanced indexing 
scheme at the architecture’s core supports quick identification of structural node 
relationships. Based on this scheme, we extend the application of path join al-
gorithms to implement most parts of the XPath query language specification 
and add support for keyword search on element and attribute contents. 

1. Overview 

eXist (http://exist-db.org) is an Open Source effort to develop a native XML database 
system, which can be easily integrated into applications dealing with XML in a vari-
ety of possible scenarios, ranging from web-based applications to documentation 
systems running from CDROM. The database is completely written in Java and may 
be deployed in a number of ways, either running as a stand-alone server process, 
inside a servlet-engine or directly embedded into an application. 

eXist provides schema-less storage of XML documents in hierarchical collections. 
Using an extended XPath syntax [2, 6], users may query a distinct part of the collec-
tion hierarchy or even all the documents contained in the database. Despite being 
lightweight, eXist’s query engine implements efficient, index-based query processing. 
An enhanced indexing scheme supports quick identification of structural relationships 
between nodes, such as parent-child, ancestor-descendant or previous-/next-sibling. 
Based on path join algorithms, a wide range of path expression queries is processed 
only using index information. Access to the actual nodes, which are stored in the 
central XML document store, is not required for these types of expressions.  

The database is currently best suited for applications dealing with small to large 
collections of XML documents which are occasionally updated. eXist provides a 
number of extensions to standard XPath to efficiently process fulltext queries, includ-
ing keyword searches, queries on proximity of search terms or regular expressions. 
For developers, access through HTTP, XML-RPC, SOAP and WebDAV is provided. 
Java applications may use the XML:DB API [18], a common interface for access to 
native or XML-enabled databases, which has been proposed by the vendor independ-
ent XML:DB initiative. 
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A growing number of developers is actively using the software in a variety of ap-
plication scenarios. Applications show that eXist – despite its relatively short project 
history – is alread able to address true industrial system cases, for example, as a core 
retrieval component in a multi-lingual technical documentation publishing system, 
containing technical maintenance documentation for several car models produced by 
an italian manufacturer.  

Main contributions of this article are: 
1. We provide a detailed description of the data structures, the indexing architecture 

and the query processing aspects implemented in eXist.  
2. We show how an enhanced numbering scheme for XML nodes at the architecture’s 

core could be used to implement efficient processing of complex path expression 
queries on large, unconstrained document collections. Contrary to other proposals, 
which focus on the efficient processing of ancestor-descendant relationships, our 
indexing scheme supports all axes of navigation as required by the XPath specifi-
cation. 

3. While previous contributions have indicated the superiority of path join algorithms 
over conventional tree traversals for a limited set of expressions [10, 15, 16], we 
extend the application of path joins to implement large parts of the XPath query 
language and add support for keyword search on element and attribute content. 
 
The paper is organized as follows: The next section presents some details on the 

indexing and storage of XML documents as implemented in eXist. We will introduce 
the numbering scheme used at the core of the database engine and describe the or-
ganization of index and data files. Section 3 will then explain how the numbering 
scheme and the created index structures are used in query processing. In Section 4 we 
finally present some experimental results to estimate the efficiency and scalability of 
eXist’s indexing architecture and query engine.  

2. XML Indexing and Storage 

This section takes a closer look at the indexing and storage architecture implemented 
in eXist. We will first provide some background information and then introduce the 
numbering scheme used at the core of the database. 

2.1. Background 

XML query languages like XPath [2, 6] or XQuery [4] use path expressions to navi-
gate through the logical, hierarchical structure of an XML document, which is mod-
elled as an ordered tree. A path expression locates nodes within a tree. For example, 
the expression 
book//section/title

will select all “title” elements being children of “section” elements which have an 
ancestor element named “book”. The double slash in subexpression “book//section” 
specifies that there must be a path leading from a “book” element to a “section” ele-
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ment. This corresponds to an ancestor-descendant relationship, i.e. only “section” 
elements being descendants of “book” elements will be selected. The single slash in 
“section/title” denotes a parent-child relationship. It will select only those titles whose 
parent is a “section” element.  

XPath defines additional node relationships to be specified in a path step by an axis 
specifier. Among the supported axes are ancestor, descendant, parent, child, preced-
ing-sibling or following-sibling. The / and // are abbreviations for the child and de-
scendant-or-self axes. For example, the expression “//section” is short for 
“/descendant-or-self::node()/child::section”. 

According to XPath version 2.0 [2], which is contained as a subset in XQuery, the 
result of a path expression is a sequence of distinct nodes in document order. The 
selected node sequence may be further filtered by predicate expressions. A predicate 
expression is enclosed in square brackets. The predicate is evaluated for each node in 
the node sequence, returning a truth value. Those nodes in the sequence for which the 
predicate returns false are discarded. For example, to find all sections whose title 
contains the string “XQuery” in its text node children, one may use the expression: 
book//section[contains(title, ‘XQuery’)]

The predicate subexpression specifies a value-based selection, while the subex-
pression “book//section” denotes a structural selection. Value-based selections can be 
specified on element names, attribute names/values or the text strings contained in an 
element. Structural selections are based on the structural relationsships between 
nodes, such as ancestor-descendant or parent-child.  

Quite a number of different XML query language implementations are currently 
available to XML developers. However, most implementations available as Open 
Source software rely on conventional top-down or bottom-up tree traversals to evalu-
ate path expressions. 

Despite the clean design supported by these tree-traversal based approaches, they 
become very inefficient for large document collections as has been shown previously 
[10, 15, 16]. For example, consider an XPath expression selecting the titles of all 
figures in a collection of books: 
/book//figure/title

In a conventional, top-down tree-traversal approach, the query processor has to fol-
low every path beginning at “book” elements to check for potential  “figure” descen-
dants, because there is no way to determine the possible location of “figure” descen-
dants in advance. This implies that a great number of nodes not being “figure” ele-
ments have to be accessed to test (i) if the node is an element and (ii) if its qualified 
name matches “figure”. 

Thus index structures are needed to efficiently perform queries on large, uncon-
strained document collections. The indexing scheme should provide means to process 
value-based as well as structural selections. While value-based selections are gener-
ally well supported by extending traditional indexing schemes, such as B+-trees, 
structural selections are much harder to deal with. To speed up the processing of path 
expressions based on structural relationships, an indexing scheme should support the 
quick identification of such relationships between nodes, for example, ancestor-
descendant or parent-child relationships. The necessity to traverse a document subtree 
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should be limited to special cases, where the information contained in indexes is not 
sufficient to process the expression. 

2.2. Numbering Schemes 

A considerable amount of research has been carried out recently to design index struc-
tures which meet these requirements. Several numbering schemes for XML docu-
ments have been proposed [5, 8, 10, 14, 15, 16]. A numbering scheme assigns a 
unique identifier to each node in the logical document tree, e.g. by traversing the 
document tree in level-order or pre-order. The generated identifiers are then used in 
indexes as a reference to the actual node. A numbering scheme should provide 
mechanisms to quickly determine the structural relationship between a pair of  nodes 
and to identify all occurrences of such a relationship in a single document or a collec-
tion of documents. 

In this section we will briefly introduce three alternative numbering schemes, 
which have been recently proposed. We will then discuss the indexing scheme used at 
the core of eXist, which represents an extension to the level-order numbering scheme 
presented below. 

An indexing scheme which uses document id, node position and nesting depth to 
identify nodes has been proposed in [16] (also discussed in [15]). According to this 
proposal, an element is identified by the 3-tuple (document id, start position:end posi-
tion, nesting level). Start and end position might be defined by counting word num-
bers from the beginning of the document. Using the 3-tuples, ancestor-descendant 
relationships can be determined between a pair of nodes by the proposition:  A node x 
with 3-tuple (D1, S1:E1, L1) is a descendant of a node y with 3-tuple (D2, S2: E2, 
L2) if and only if D1 = D2; S1 < S2 and E2 < E1. 

The XISS system ([10], also discussed in [5]) proposes an extended preorder num-
bering scheme. This scheme assigns a pair of numbers <order, size> to each node, 
such that: (i) for a tree node y and its parent x, order(x) < order(y) and order(y) + 
size(y) ≤ order(x) + size(x) and (ii) for two sibling nodes x and y, if x is the predeces-
sor of y in preorder traversal, order(x) + size(x) < order(y). While order is assigned 
according to a pre-order traversal of the node tree, size can be an arbitrary integer 
larger than the total number of descendants of the current node. The ancestor-
descendant relationship between two nodes can be determined by the proposition that 
for two given  nodes x and y, x is an ancestor of y if and only if order(x) <  order(y) ≤ 
order(x) + size(x). 

The major benefit of XISS is that ancestor-descendant relationships can be deter-
mined in constant time using the proposition given above. Additionally, the proposed 
scheme supports document updates via node insertions or removals by introducing 
sparse identifiers between existing nodes. No reordering of the document tree is 
needed unless the range of sparse identifiers is exhausted. This feature is used in [5] 
to assign durable identifiers keeping track of document changes. 

Lee et al. [8] proposed a numbering scheme which models the document tree as a 
complete k-ary tree, where k is equal to the maximum number of child nodes of an 
element in the document. A unique node identifier is assigned to each node by 
traversing the tree in level-order. Figure 1 shows the identifiers assigned to the nodes 
of a very simple XML document, which is modelled as a complete 2-ary tree. 
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very simple XML document, which is modelled as a complete 2-ary tree. Because the 
tree is assumed to be complete, spare ids have to be inserted at several positions. 

Fig. 1. Unique identifiers assigned by the level-order numbering scheme 
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<name>John Cage</name>
<phone>

<office>664455</office>
<home>445566</home>

</phone>
</contact>
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The unique identifiers generated by this numbering scheme have some important 
properties: from a given identifier one may easily determine the id of it's parent, sib-
ling or possible child nodes. For example, for a k-ary document tree we may obtain 
the identifier of the parent node of a given node whose identifier is i by the following 
function: 





 +−= 1)2(

k
iparenti  

(1) 

However, the completeness constraint imposes a major restriction on the maximum 
document size to be indexed by this numbering scheme. For example, a typical article 
will have a limited number of top-level elements like chapters and sections while the 
majority of nodes consists of paragraphs and text nodes located below the top-level 
elements. In a worst case scenario, where a single node at some deeply structured 
level of the document node hierarchy has a the largest number of child nodes, a large 
number of spare identifiers has to be inserted at all tree levels to satisfy the complete-
ness constraint, so the assigned identifiers grow very fast even for small documents. 

The numbering scheme implemented in eXist thus provides an extension to this 
scheme. To overcome the document size limitations we decided to partially drop the 
completeness constraint in favour of an alternating scheme. The document is no 
longer viewed as a complete k-ary tree. Instead the number of children a node may 
have is recomputed for every level of the tree, such that: for two nodes x and y of a 
tree, size(x) = size(y) if level(x) = level(y), where size(n) is the number of children of 
a node n and level(m) is the length of the path from the root node of the tree to m. The 
additional information on the number of children a node may have at each level of the 
tree is stored with the document in a simple array. Figure 2 shows the unique identifi-
ers generated by eXist for the same document as above. 
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Fig. 2. Unique node identifiers assigned by the alternating level-order numbering scheme 
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Our approach accounts for the fact that typical documents will have a larger num-
ber of nodes at some lower level of the document tree while there are fewer elements 
at the top levels of the hierarchy. The document size limit is raised considerably to 
enable indexing of much larger documents. Compared to the original numbering 
scheme, less spare identifiers have to be inserted.  

Also inserting a node at a deeper level of the node tree has no effect on the unique 
identifiers assigned to nodes at higher levels. It is also possible to leave sparse identi-
fiers between existing nodes to avoid a frequent reordering of node identifiers on later 
document updates. This technique has been described in [5] and [10]. However, eXist 
does currently not provide an advanced update mechanism as defined, for example, 
by the XUpdate standard [17]. Documents may be updated as a whole, but it is not 
possible to manipulate single nodes with current versions of eXist. Support for dy-
namic document updates is planned for future versions, but currently eXist is best 
suited for more or less static documents which are rarely updated. We have already 
started to simplify the generated index structures (see below) as a prerequisite for a 
future XUpdate implementation. 

Using an alternating numbering scheme does not affect the general properties of 
the assigned level-order identifiers. From a given unique identifier we are still able to 
compute parent, sibling and child node identifiers using the additional information on 
the number of children each node may have at every level of the tree.  

There are some arguments in favour of the numbering scheme currently imple-
mented. Contrary to our approach, the alternative indexing schemes discussed above 
concentrate on a limited subset of path expression queries and put their focus on effi-
cient support for the child, attribute and descendant axes of navigation. Since eXist 
has been designed to provide a complete XPath query language implementation, sup-
port for all XPath axes has been of major importance during development. For exam-
ple, consider an expression which selects the parent elements of all paragraph ele-
ments containing the string “XML”: 
//para[contains(., ‘XML’)]/..

The “..” is short for “parent::node()”. It will select the parent element of each node 
in the current context node set. Using our numbering scheme, we may easily compute 
the parent node identifier for every given node to evaluate the above expression. We 
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are also able to compute the identifiers of sibling or child nodes. Thus all axes of 
navigation can be implemented on top of the numbering scheme.  

This significantly reduces the storage size of a single node in the XML store: sav-
ing soft or hard links to parent, sibling, child and attribute nodes with the stored node 
object is not required. To access the parent of a node, we simply calculate its unique 
identifier and look it up in the index. Since storing links between nodes is not re-
quired, an element node will occupy no more than 4 to 8 bytes in eXist’s XML store. 

Additionally, with our indexing scheme any node in an XML document may serve 
as a starting point for an XPath expression. For example, the nodes selected by a first 
XPath expression can be further processed by a second expression. This is an impor-
tant feature with respect to XQuery, which allows multiple path expression queries to 
be embedded into an XQuery expression. 

2.3. Index and Data Organization 

In this section we provide some implementation details concerning index and data 
organization. We will then explain how the numbering scheme and the created index 
structures are used in query processing.  

Currently, eXist uses four index files at the core of the native XML storage 
backend: 
− collections.dbx manages the collection hierarchy  
− dom.dbx collects nodes in a paged file and associates unique node identifiers to 

the actual nodes  
− elements.dbx indexes elements and attributes  
− words.dbx keeps track of word occurrences and is used by the fulltext search 

extensions 
 
All indexes are based on B+-trees. An important point to note is that the indexes 

for elements, attributes and keywords are organized by collection and not by docu-
ment. For example, all occurrences of a “section”-element in a collection will be 
stored as a single index entry in the element’s index. This helps to keep the number of 
inner B+-tree pages small and yields a better performance for queries on entire collec-
tions. We have learned from previous versions that creating an index entry for every 
single document in a collection leads to decreasing performance for collections con-
taining a larger number (>1000) of rather small (<50KB) documents.  

Users will usually query entire collections or even several collections at once. In 
this case, just a single index lookup is required to retrieve relevant index entries for 
the entire collection. This results in a considerable performance gain for queries span-
ning multiple collections. We provide some details on each index file in the following 
paragraphs:  

The index file collections.dbx manages the collection hierarchy and maps 
collection names to collection objects. Due to performance considerations, document 
descriptions are always stored with the collection object they belong to. A unique id is 
assigned to each collection and document during indexing. 

The XML data store (dom.dbx) represents the central component of eXist’s na-
tive storage architecture. It consists of a single paged file in which all document nodes 
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are stored according to the W3C’s document object model (DOM) [9]. The data store 
is backed by a multi-root B+-Tree in the same file to associate the unique node identi-
fiers of top-level elements in a given document to the node’s storage address in the 
data section (see figure 3). 

Only top-level elements are indexed by the B+-tree. Attributes, text nodes and 
elements at lower levels of the document’s node hierarchy are just written to the data 
pages without adding a key in the B+-tree. Access to these types of nodes is provided 
by traversing the nearest available ancestor found in the tree. However, the cases 
where direct access to these nodes is required are very rare. The query engine will 
process most types of XPath expressions without accessing dom.dbx. 

Fig. 3. XML Data Store Organization 
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Please note again that it is not necessary to keep track of links between nodes, e.g. 
by using pointers to the next sibling, first child or parent. The DOM implementation 
completely relies on the numbering scheme to determine node relationships. For ex-
ample, to get the parent of a node, the parent’s unique identifier is calculated from the 
node's identifier and the corresponding node is retrieved via an index lookup. As a 
result, the storage size of a document in dom.dbx will likely be smaller than the origi-
nal data source size for larger documents. 

Since nodes are stored in document order, only a single initial index lookup is re-
quired to serialize a document or fragment. eXist's serializer will generate a stream of 
SAX [12] events by sequentially walking nodes in document order, beginning at the 
fragment's root node.  
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Fig. 4. Index Organization for Elements and Attributes 
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Element and attribute names are mapped to unique node identifiers in file ele-
ments.dbx. Each entry in the index consists of a key – being a pair of <collection-
id, name-id> - and an array value containing an ordered list of document ids and node 
ids, which correspond to elements and attributes matching the qualified name in the 
key. To find, for example, all chapters in a collection of books, the query engine re-
quires a single index lookup to retrieve the complete set of node identifiers pointing to 
chapter elements.  

Since the sequence of document and node ids consists entirely of integer values, it 
is stored in a combination of delta and variable-byte coding to save storage space. 

Finally, the file words.dbx corresponds to an inverted index as found in many 
traditional information retrieval systems. The inverted index represents a common 
data structure and is typically used to associate a word or phrase with the set of 
documents in which it has been found and the exact position where it occurred [13]. 
eXist’s inverted index differs from traditional IR systems in that instead of storing the 
word position, we use unique node identifiers to keep track of word occurrences. By 
default, eXist indexes all text nodes and attribute values by tokenizing text into key-
words. In words.dbx, the extracted keywords are mapped to an ordered list of docu-
ment and unique node identifiers. The file follows the same structure as elements.dbx, 
using <collection-id, keyword> pairs for keys. Each entry in the value list points to a 
text or attribute node where the keyword occurred. It is possible to exclude distinct 
parts of a given document type from fulltext-indexing or switch it off completely. 

3. Query Language Implementation 

Given the index structures presented above, we are able to access distinct nodes by 
their unique node identifier, retrieve a list of node identifiers matching a given quali-
fied node name or a specified keyword. In this section, we will explain how the avail-
able index structures are used by the query engine to efficiently process path expres-
sion queries. 
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eXist currently contains an experimental XPath query language processor. XPath 
represents a core standard for XML query processing, since it is embedded into a 
number of other XML query language specifications like XSLT and XQuery. eXist’s 
XPath processor implements major parts of the XPath 1.0 standard requirements, 
though – at the time of writing – it is not yet complete. However, the existing func-
tionality covers most of the commonly needed XPath expressions. Additionally, sev-
eral extensions to standard XPath are available, which will be described below. 

3.1. Path join algorithm 

Based on the features provided by the indexing scheme, eXist’s query engine is able 
to use path join algorithms to efficiently process path expressions. Several path join 
algorithms have been proposed in recent research: Zhang et al. [16] explored the effi-
ciency of traditional merge join algorithms as used in relational database systems for 
XML query processing. They proposed a new algorithm, multi-predicate merge join, 
which could outperform standard RDBMS joins. 

Two families of structural join algorithms have also been proposed in [15]: Tree-
merge and stack-tree. While the tree-merge algorithm extends traditional merge joins 
and the new multi-predicate merge join, the stack-tree algorithm has been especially 
optimized for path joins as used in XML query processing.  

General path join algorithms based on the extended pre-order numbering scheme 
of XISS have been proposed and experimentally tested in [10]. Three algorithms are 
assigned to distinct types of subexpressions: Element-Attribute Join, Element-
Element Join and Kleene-Closure Algorithm. 

eXist’s query processor will first decompose a given path expression into a chain 
of basic steps. Consider an XPath expression like 
/PLAY//SPEECH[SPEAKER=’HAMLET’]

We use the publicly available collection of Shakespeare plays for examples [3]. 
Each play is divided into ACT, SCENE and SPEECH sections. A SPEECH element 
includes SPEAKER and LINE elements. The above expression is logically split into 
subexpressions as show in figure 5. 

Fig. 5. Decomposition of Path Expression 

PLAY//SPEECH SPEECH[SPEAKER] SPEAKER='HAMLET'  

The exact position of PLAY, SPEECH and SPEAKER elements is provided in the 
index file elements.dbx. To process the first subexpression, the query engine will load 
the root elements (PLAY) for all documents in the input document set. Second, the set 
of SPEECH elements is retrieved for the input documents via an index lookup from 
file elements.dbx. Now we have two node sets containing potential ancestor and de-
scendant nodes for each of the documents in question. Each node set consists of  
<document-id, node-id> pairs, ordered by document identifier and unique node identi-
fier. Node sets are implemented using Java arrays. 
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To find all nodes from the SPEECH node set being descendants of nodes in the 
PLAY node set, an ancestor-descendant path join algorithm is applied to the two sets. 
eXist’s path join algorithms are quite similar to those presented in [10]. However, 
there are some differences due to the used numbering scheme. 

We concentrate on the ancestor-descendant-join as shown in figure 6. The function 
expects two ordered node sets as input: the first contains potential ancestor nodes, the 
second potential descendants. Every node in the two input sets is described by a pair 
of <document-id, node-id>. The function recursively replaces all node identifiers in 
the descendant set with the id of their parent using function get_parent_set in the 
outer loop. The inner loop then compares the two sets to find equal pairs of nodes by 
incrementing either ax or dx depending on the comparison. If a matching pair of 
nodes is found, ancestor and descendant node are copied to output. The algorithm 
terminates if get_parent_set returns false, which indicates that the descendant list 
contains no more valid node identifiers. 

Fig. 6. Ancestor-Descendant Join 

Algorithm ancestor_descendant_join(al, dl)
dl_orig = copy of dl;
// get_parent_set replaces each node-id
// in dl with the node-id of its parent.
while(get_parent_set(dl)) {

ax = 0;
dx = 0;
while(dx < dl.length) {

if(dl[dx] == null)
dx++;

else if(dl[dx] > al[ax]) {
if(ax < al.length - 1)

ax++;
else

break;
} else if(dl[dx] < al[ax])

dx++;
else {

output(al[ax], dl_orig[dx]);
dx++;

}
}

} 
 
The outer loop is repeated until all ancestor nodes of descendants in dl are checked 

against the ancestor set. This way we ensure that extreme cases of element-element 
joins are properly processed, where a single node is a descendant of multiple ancestor 
nodes. 

The generated node set will become the context node set for the next subexpression 
in the chain. Thus the resulting node set for expression PLAY//SPEECH becomes the 
ancestor node set for expression SPEECH[SPEAKER], while the results generated by 
evaluating the predicate expression SPEAKER=”HAMLET” become the descendant 
node set. 
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To evaluate the subexpressions PLAY//SPEECH and SPEECH[SPEAKER], eXist 
does not need access to the actual DOM nodes in the XML store. Both expressions 
are entirely processed on basis of the unique node identifiers provided in the index 
file. Additionally, the algorithm determines ancestor-descendant relationships for all 
candidate nodes in all documents in one single step. 

Yet to process the equality operator in the predicate subexpression, the query en-
gine will have to retrieve the actual DOM nodes to determine their value and compare 
it to the literal string argument. Since a node’s value may be distributed over many 
descendant nodes, the engine has to do a conventional tree traversal, beginning at the 
subexpression’s context node (SPEAKER). 

This could be avoided by adding another index structure for node values. However, 
for many documents addressing human users, exact match query expressions could be 
replaced by corresponding expressions using the fulltext operators and functions de-
scribed in the next section. We have thus decided to drop the value index supported 
by previous versions of eXist to reduce disk space usage. 

3.2. Query Language Extensions 

The XPath specification only defines a few limited functions to search for a given 
string inside the character content of a node. This is a weak point if one wants to 
search through documents containing larger sections of text. For many types of 
documents, the provided standard functions will not yield satisfying results. 

eXist offers two additional operators and several extension functions to provide ac-
cess to the fulltext content of nodes. For example, to select the scene in the cavern 
from Shakespeare’s Macbeth: 
//SCENE[SPEECH[SPEAKER &= ’witch’ and near(LINE, ‘fenny
snake’]]

&= is a special text search operator. It will select context nodes containing all of 
the space-separated terms in the right hand argument. To find nodes containing any of 
the terms the |= operator is used. The order of terms is not important. Both operators 
support wildcards in the search terms. To impose an order on search terms the 
near(node set, string, [distance]) function selects nodes for which each of the terms 
from the second argument occur near to each other in the node's value and in correct 
order. To match more complex string patterns, regular expression syntax is supported 
through additional functions. 

All fulltext-search extensions use the inverted index file words.dbx, which maps 
extracted keywords to an ordered list of document and unique node identifiers. Thus, 
while the equality operator as well as standard XPath functions like contains require 
eXist to perform a complete scan over the contents of every node in the context node 
set, the fulltext search extensions rely entirely on information stored in the index. 
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4. Performance and Scalability 

To estimate the efficiency of eXist's indexing and query processing some experimen-
tal results are provided in this section. We compare overall query execution times for 
eXist, Apache’s Xindice [1] and an external XPath query engine [11] which is based 
on a conventional tree-traversal based approach. In a second experiment we process 
the same set of queries with increasing data volumes to test the scalability of eXist. 

We have chosen a user-contributed data set with 39.15 MB of XML markup data 
containing 5000 documents taken from a movie database. Each document describes 
one movie, including title, genre, ratings, complete casts and credits, a summary of 
the plot and comments contributed by reviewers. Document size varies from 500 
bytes to 50 KB depending on the number of credits and comments. Experiments were 
run on a PC with AMD Athlon 4 processor with 1400 MHZ and 256 MB memory 
running Mandrake Linux 8.2 and Sun's Java Development Kit 1.4. 

We formulated queries for randomly selected documents which might typically be 
of interest to potential users. For example, we asked for the titles of all western mov-
ies or films with certain actors or characters.  

The Jaxen XPath engine [11] has been selected to represent a conventional, top-
down tree-traversal based query engine. For our experiment, Jaxen runs on top of 
eXist's persistent DOM implementation. Additionally, we processed the same set of 
queries with an alternative native XML database, Apache’s Xindice. Since Xindice 
requires manual index creation, we defined an index on every element referenced by 
our queries. Our test client used the XML:DB API to access Xindice as well as eXist.  

Each query in the set has been repeated 10 times for each test run to allow B+-Tree 
page buffers to come into effect. This corresponds to normal database operation 
where the database server would run for a longer period of time with many users 
doing similar queries with respect to input document sets and element or attribute 
selections. Xindice and eXist use the same B+-Tree code base. Running on top of 
eXist's persistent DOM, Jaxen equally benefits from page buffering mechanisms.  

As described above, eXist does not create an index on element and attribute values. 
For a second test run, we thus replaced all exact match expressions by equivalent 
fulltext search expressions. For example, the expression //movie[.//credit=’Gable, 
Clark’] has been reformulated as follows: //movie[near(.//credit, ‘Gable, Clark’)]. 
Both sets of queries are equivalent with respect to the generated number of hits for 
our data set. 

Average query execution times for selected queries are shown in table 1. Execution 
times for retrieving result sets have not been included. They are the same for the eX-
ist-based approaches. Retrieving results merely depends on the performance of eXist's 
serializer, which has no connection to the query engine. 

Table 1. Avg. query execution times for selected queries (in seconds) 

XPath Query eXist 
eXist + 
extensions Xindice Jaxen

/movie[.//genre='Drama']//credit[@role='directors'] 3.44 1.14 10.62 21.86 
/movie[genres/genre='Western']/title 0.79 0.23 1.39 7.58 
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/movie[languages/language='English']/title 1.45 0.97 34.18 8.50 
/movie[.//credit/@charactername='Receptionist'] 3.12 0.21 27.04 51.48 
/movie[contains(.//comment, 'predictable')] 2.79 0.20 25.75 31.49 
/movie[.//credit='Gable, Clark'] 4.47 0.35 0.38 33.72 
/movie[.//languages/language='English']/title[starts-
with(.,'42nd Street')] 1.63 0.32 17.47 32.64 

/movie[languages/language='English' and cred-
its/credit='Sinatra, Frank'] 5.16 0.58 0.11 13.26 

 
Our results show that eXist's query engine outperforms the tree-traversal based ap-

proach implemented by Jaxen by an order of magnitude. This supports previous re-
search results indicating the superiority of path join algorithms [10, 15, 16]. It is also 
no surprise that search expressions using the fulltext index perform much better with 
eXist than corresponding queries based on standard XPath functions and operators. 
Results for Xindice show that selections on the descendant axis (using the // symbol) 
are not very well supported by their XPath implementation. Contrary to Xindice, 
eXist handles these types of expressions efficiently. 

In a second experiment, the complete set of 5000 documents was split into 10 sub-
collections. To test scalability we added one more subcollection to the database for 
each test sequence and computed performance metrics for eXist with the standard 
XPath and extended XPath query sets. Thus the raw XML data size processed by each 
test cycle increased from 5 MB for the first collection up to 39.15 MB for 10 collecti-
ons. As before, each query has been repeated 10 times. Average query execution 
times for the complete set of queries are shown in figure 7. 

Fig. 7. Avg. query execution times by source data size 
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We observe for both sets of queries that query execution times increase at least lin-
earily with increasing source data size. Thus our experiment shows linear scalability 
of eXist’s indexing, storage and querying architecture. 
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5. Outlook 

Despite the many projects already using eXist, there is still much work to be done to 
implement outstanding features and increase usability and interoperability. Some of 
eXist’s weak points – namely indexing speed and storage requirements - have already 
been subject to a considerable redesign. We are currently concentrating on complete 
XPath support, possibly using existing implementations developed by other projects.  

Another important topic is XUpdate - a standard proposed by the XML:DB initia-
tive for updates of distinct parts of a document [17]. eXist does currently not provide 
an advanced update mechanism. Documents may only be updated as a whole. While 
this is a minor problem for applications dealing with relatively static document collec-
tions, it represents a major limitation for applications which need to frequently update 
portions of rather large documents.  

As explained above, the numbering scheme could be extended to avoid a frequent 
reordering of node identifiers on document updates by introducing sparse identifiers 
between nodes [5, 10]. The necessary changes to handle sparse identifiers have al-
ready been implemented. We have also started to simplify the created index struc-
tures, making them easier to maintain on node insertions or removals. However, some 
work remains to be done on these issues. 

Additionally, support for multiversion documents using durable node numbers has 
been proposed in [5]. The scheme described there could also be implemented for 
eXist. 

Being an open source project, eXist strongly depends on user feedback and partici-
pation. Interested developers are encouraged to join the mailing list and share their 
views and suggestions. 
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